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1 INTRODUCING VSD PROJECT

Virtual Spacecraft Design (VSD) is a project that aims at enabling the Model Based Systems
Engineering (MBSE) methodology for space system projects.

1.1 MBSE

Model Based Systems Engineering (MBSE) is a recent paradigm in systems engineering
that uses computer models to enhance the SE process where the system is described by a
set of integrated computer models instead of being described by documents as is the case
in classical systems engineering.
The benefits of this methodology are:

- Traceability along the life cycle

- Consistency between the different views of the different disciplines
- Easier concurrent collaboration of different actors
- Enabling of automated transfer of information from and to domain specific tools.

As space systems become increasingly complex, the application of the MBSE methodology
in the space industry is seen as necessary to avoid the costs and time to completion to
increase significantly.

1.2 VSEE Toolset

In the frame of the VSD project, a set of software tools has been produced as prototypes for
the deployment of MBSE applied to space systems.
The VSEE Toolset is composed of:

- SSDE: the model editor

- SSVT: atool for the visualization of the models.
- SSRDB: a tool for the management of the repository that supports concurrent work
on the datamodel.

2 OVERVIEW OF MY WORK

My task was to support the VSD project. It can be divided in three stages. The first stage
was to support the acceptance of the VSEE Toolset test all the features and reporting
issues. This stage is not described in this report. The second stage was to create a large
scale model based on an existing mission?, and to exercise the modeling process and define
guidelines on the use of VSEE. This stage is described in chapter 3. The third step was to
develop tools for the exploitation of VSEE models, building upon by the previously defined
guidelines. This stage is described in chapter 4.

1 The mission used was Sentinel 5p
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3 DEFINITION OF MODELING GUIDELINES

3.1 Introduction

The VSEE framework in its current state offers a lot of freedom for modeling. In the
absence of guidelines or constraints on how to use the metamodel, the users have to decide
the way they want to use the different classes and relations of the metamodel and have to
define their own modeling process.

This freedom occurs mostly at two levels:

The first one concerns the place of the ValueProperties that hold the engineering data in
the model. Since ValueProperties can be attached to most of the classes of the metamodel,
the data can be spread among objects of the different aspects of the model such as
topological model, functional model and behavioural model. Moreover, the multi-layered
architecture of some of the aspects of the model bring another dimension to this freedom.
The second level concerns the precise meaning given to the relations between different
objects. Some relations have a clear meaning that most users should interpret the same
way, but others are more ambiguous and different assumptions can lead to very different
ways of modeling and of interpreting a model. Here also the multi-layered architecture ads
complexity.

Flexibility of the framework and freedom of choosing the way one wants to model are
important because the tool must be able to cope with many different kinds of systems and
different projects have different needs. However there are also some major drawbacks
when too much freedom is given.

The first drawback is that it takes time to define one’s own guidelines. Choices regarding
the place of property values and the semantics of the relation between objects have
consequences that are not easy to foresee when starting the modeling activity. It takes time
to establish good guidelines and users will often want to start the modeling at once. It is
therefore useful to provide reference guidelines to spare time and offer a smooth
introduction to new users to VSEE. A second drawback is that if everybody defines his own
modeling practice, it is not possible to exchange models between users without losing or
corrupting the meaning behind the data. The third drawback of too much freedom is
related to the automation of processes on the model. In order to implement useful features
for the exploitation of the models, it must be very clearly defined where each type of data
can be found in the model and what the assumptions are regarding the relations between
the objects.

In order to keep as much freedom and flexibility as possible while countering those
drawbacks the idea is to take a modular approach. Different sets of constraints on the
model are defined, each enabling some specific feature. The users can then decide if they
want to follow the constraints to be able to use the feature, or if they don’t need this feature
and prefer to keep some freedom in the way they model.

The users also have to think about who they want to be able to exchange models with, in
order to adopt the modeling practice of this community.

In the following of this chapter, I will present some modeling guidelines that are not
related to a specific feature but that are more a way of organizing the model at high level.
These modeling guidelines are aimed at obtaining a highly interconnected model that can
be navigated in a useful way, and it should serve as a good basis for developing future
features.
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In the next chapter I will present some features that I implemented as examples of how the
model can be exploited, together with the constraints on the model required to enable
those features.

3.2 Semantics of the different conceptual layers for topological
model

As said before, the place of the ValueProperties in the model is one of the major aspects
that has to be specified in order to enable sharing of the models and automated processes.
For example, we need to know where the mass of a component will be stored in the model
in order to access it automatically. But in defining those rules, it is important to keep in
mind that the model must cope with many variations of the same type of property that
represent this property in different contexts along the life cycle of the system. For example
a component can have a mass “as specified” by its spec sheets, a mass “as measured” on the
physical realization, and mass “as allocated” at the beginning of the project. All those
different kinds of mass properties have to coexist in the model, as we want to keep track of
this data.

To get a good idea on how to organize the data in the model, the first thing to do is to
define precisely the semantics attached to the different layers of the topological aspect of
the model. Indeed most of the properties related to the components of the system will be
stored in the SystemElements that represent them. The question is to know to which layer
each property should belong.

Having a precise semantics for the topological layers will also allow us to refine the
semantics of the relation between the SystemElements of this layer and the other objects of
the model.

3.2.1 Comparing the options

At the time when I started working on the VSD project, there was no clear consensus on the
semantics behind the different layers of the topological aspect of the model. Because of
this, it was unclear which ValueProperties should belong to which layer.

The main divergence was about the meaning of the ElementDefinition. I did a trade-off
analysis on the two different views to measure the impact each view has on the modeling
process in order to choose the best option. Here are the two different views of what an
ElementDefinition (ED) should be:

- View 1: It should define a specific type of elements that share the same specification.
A such, the properties and their values are defined in the ED. The ED can be seen as
a spec sheet. With such a definition, an ED could represent for example a star
tracker of a specific brand and model.

- View 2: It should define a generic type of elements that have the same type of
properties. The specific values of those properties are left to be defined in the
specific context of the usage. With such a definition, an ED could represent a family
of star trackers that use the same kind of input and output, have the same
operational modes, but that can have different values for their mass and field of view
for example.
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To better understand the full implications of this discussion, let us consider what attributes
can be attached to an ElementDefinition. This will give a better idea of what an
ElementDefinition can model and what is the most efficient way to use it.
An ElementDefinition is composed of:

- Aninternal structure, using element usages and connecting them with interfaces.

- External ports (InterfaceEndUsage).

- A behavior (DiscreteStateModel)

- Values (ValuePropertyValues) for its properties (the propertie s themselves are not
contained in the ED)

And it can be associated with:
Properties (ValueProperties)

Categories
- Functions, for functional allocation
- Requirements

With all this in mind, here is a comparison of the implications of the two different views:

Criterion ED defines a specific kind of ED defines a generic
components kind of components

(values of the properties are (values of the properties
defined) are defined at EU level)

Internal structure, external interfaces and A ED can be reused for
behavior must be recreated for each ED every element with the same
even if only the value of the properties internal structure interface,
change. behavior and kind of
properties
2 If two usages of the same ED diverge in Nothing must be changed to
the value of their properties during the the model when only values

project, one of them must be retyped with  of the properties diverge.
a new ED. Or the diverging properties
must be displaced at EU vl

3 The values of the properties must only be ~ The values of the properties

specified once must be specified for each
usage

4 An ED can be used to represent a Such catalogue would have
specification for an element, and to be based on EUs, that are
catalogues of equipment can be created harder to integrate in the
and then be used to type elements of the model2. Also, stand-alone
users model EUs are not possible to

represent in a diagram and
conceptually less clear

2 The user would have to create manually the relation from the containing ElementDefinition to the
ElementUsage. Also the ElementUsage could be used only once in the model.

6
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The view number 1 wins the comparison because it enables an easier implementation of
libraries and catalogues, which is foreseen to be an important element of the framework.
The issue with criterion number 1 could be solved by having also a “template” library of
ElementDefinitions without values, that could be used to create the refined “equipment

catalogue”.

3.2.2 Big picture

After the discussion in the previous section, here is a description of the resulting guidelines

and an overview of the modeling process.

The following explains the correspondence between the different layers of the model and

the concepts

€->esa

generic * specific
Category Element Element Element Element
Definition Usage Occurrence Realisation
_
Star Tracker Star Tracker Specific Star Tracker
type XYZ type XYZ occurrence in with
Star Tracker As used in the system serial number
higher-level of a star XXXX
context tracker XYZ

Category: It defines a set of properties. As such, it can represent a generic type of
element that is described by those properties. Categories have an inheritance
mechanism that enables the creation of taxonomies of elements. As an example, a
category could be used to represent the concept of “star tracker”. This Category
would contain all the properties that are needed to describe a star tracker. It could
inherit some properties from a more generic Category, such as Sensor.

Element Definition: It defines external ports, and internal structure, a behavior, and
some properties (either stand-alone ones or as result of category assignement). It
can also define the value of its properties. As such, an ElementDefinition represents
the spec sheet of a specific component, for example a “star tracker model XYZ from
company ABC”.

Element Usage: It represents a component in the context of a higher-level assembly,
and is typed by and Element Definition which provides the content (properties,
behavior, internal structure). For example it could represent the “star tracker model
XYZ” in the context of the AOCS subsystem. At this level the component can be
interface to the other components of the assembly. The ElementUsage can also be

7
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used to store properties that are specific to the context in which the component is
used, such as its geometrical position in the assembly.

- ElementOccurrence: It represents a specific occurrence of a component in the
context of the whole system. So there is a separate ElementOccurrence for each
component of the system, which is not always the case for ElementUsages in case of
nested structures. As such, the ElementOccurrence can be seen as a placeholder for
an element that needs to be built. As the occurrence tree is folded out, it can be
matched to the product tree of CAD tools.

- ElementRealisation: It represents a physical component that has been produced.
For example it could be a “star tracker XYZ with serial number XXXX”. If a physical
component needed to be replaced during integration, its ElementRealisation would
be detached of the ElementOccurrence, and replaced by an ElementRealisation
representing the new component.

Here is a big picture view of the modeling process:

/ Libraries \

Equipment Lib
ED/EU

use generate -
Definition Explicit
layer product
ED/EU structure

EO

traces
attached

Other

Realisations
models

ER

When building the topological architecture of the model, the user starts by creating some
ElementDefinitions and ElementUsages to break down the structure of the system. Those
EDs are specific to the project and represent the different sub-systems and modules. When
reaching the equipment level, the ElementUsages can be left untyped if the specific type of
the equipment is not defined yet, as it is often the case at the beginning of a project. So
there could be an ElementUsage “star tracker” without any type in the AOCS
ElementDefinition. This EU is a placeholder for a star tracker that will be chosen later.

At this stage, the occurrence layer can already be generated. Later on when the type of the
star tracker is chosen, the ElementUsage can be typed with an ElementDefinition coming
from the “Equipment Library” or provided by a supplier. The occurrence layer can
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regenerated and if the ElementDefinition of the star tracker defines an internal structure
the deeper levels will appear in the explicit product structure.

Later on ElementRealisations can be attached to the ElementOccurrences to represent the
components that have been produced and to store their measured properties.

3.2.3 Libraries

The choice of semantics for the layers for the topological elements enables the convenient
implementation of libraries. Libraries will enable reuse of parts of models across different
projects. The way those libraries will be created and managed is yet to be defined, but here
is a general idea concerning the basic mechanisms.

The libraries will be built on several levels, each level using the previous level to build more
specific items:

1. The first level is the QUDV model that contains definitions for units and quantity
kinds.

2. The second level is a ValueProperty library build using the QUDV model and
containing all the recognised types of ValueProperties. Using ValueProperties from
this library insures that they can be understood and incorporated into other models.

3. The third level is a Category library that defines a taxonomy of Categories and their
contained ValueProperties. This library is itself constructed upon several layers,
using the inheritance relation between the Categories. So the library defines
categories of elements from very generic like “sensor”, to more specific like “star
tracker”. In this example the Category “star tracker” would inherit ValueProperties
from the “sensor” Category and add more ValueProperties that are needed to
describe a star tracker specifically.

4. The forth level is the Component Tamplate library, that contains ElementDefinitions
and their internal structure of ElementUsages, their intefaces and ports, and
possibly their behaviour definition. They can also have some Categories assigned to
them, but no values associated to their ValueProperties. The ElementDefinitions of
this library, together with their attributes, represent families of components that
share the same structure, behaviour, and kind of properties, but that have different
values for those propertiess.

5. Finally comes the Component Library that contains , and that can be seen as a
catalogue of spec sheets for component of space systems. This library contains
ElementDefinitions and their associated ElementUsages, as well as their
ValueProperties with their values. Those ElementDefinitions are ready to be used to
type ElementUsages of the users model.

3 Note that in order to use such a library, a mechanism for duplicating ElementDefinitions should be
implemented. Indeed if different ElementDefinitions are to be derived from a “template” ElementDefinition, this
ElementDefinition needs to be duplicated before being refined in different versions.

9
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3.2.4 Remaining issues & further developments

3.2.4.1 Interfaces

VSEE offers a complete way to model interfaces and ports, with the ability to give them
types. If a list of interface types and related port types is defined, some checks could be
implemented to insure the consistency of the connections.

VSEE offers also a way to group interfaces to reduce the clustering in the diagrams.
However I think this mechanism needs to be refined because at present it can bring some
confusion. Indeed, only interfaces can be grouped (using the property “Contained IF”) and
not the ports (InterfaceEndUsages). The result is that when creating a port that represents
a group of several ports, this relation must be deduced from the fact that it connects with
an interface grouping several interfaces. In general elements seem to end up with more
ports and interfaces than they really have (because the grouping interfaces and ports are
not easily distinguished form the basic ones), which can be confusing.

3.2.4.2Reference Association

Containment relations are unique, as elements can only be contained by one single other
element. This produces a single product tree, which is convenient because each element
has a precise place.

However one might want to describe different logical entities that may contain the same
elements. For example a heater for the fuel tank can be part of the propulsion sub-system,
but could also be seen as part of the thermal control sub-system.

In SysML, there is a mechanism to allow this kind of thing, which is called “reference
association”. Unlike containment associations, reference associations are not unique,
meaning that an element can have this relation with several other elements. This allows
representing overlapping assemblies.

The idea is to still have containment relations defining a single product tree, but to also
have reference relations to define auxiliary assemblies. I think a similar mechanism would
also be useful in VSEE. In the current implementation Categories could be used to “tag”
elements as part of some conceptual assembly, and then be able to query for those
elements. But this solution is not very intuitive, and it overloads the meaning of Categories.

10
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3.3 Modeling in the functional domain

Modeling the functional aspect of the system is a less well established activity than
modeling the topological or physical aspects. The VSEE framework provides tools for
modeling the functional aspect, but the semantics behind the different concepts used an
their intended use was at a very primitive stage when I started working on this project. It
was part of my work to bring ideas on how to use the concepts present in the framework to
create a suitable4 representation of the functional aspect of the model. This task also
included identifying concepts or features that were missing in the toolset and that would
benefit functional modeling.

This part includes therefor both recommendations on how to use the existing features of
the toolset and recommendations on how to extend the toolset.

3.3.1 Functions and functionalities

Functional modeling is something quite abstract, and the term “function” can be
interpreted in various ways. A first step towards structuring functional modeling was to
identify two different type of “functions”.

The first type of functions appear in the activities called “functional analysis” or “functional
decomposition” that are performed at the beginning of a project. Those functions represent
“functionalities” that the system must be able to perform, and they are derived from the
system specifications. Those functions are typically represented in “functional trees”
showing the decomposition of high-level functions into more specific tasks. They can also
be represented as lists of activities in some kind of scenario.

Even if the typical systems engineering process is supposed to go through functional
analysis and decomposition, those activities are not often performed explicitly in space
system projects that use a lot of legacy from previous missions or common practice. It is
therefore hard to find information relative to these activities and to identify this first type
of functions or “functionalities”. For this reason I expect this kind of function will not
always be represented in the system model.

The second type of functions are the ones that typically appear in the systems
documentation and that describe algorithms or procedures. Those functions are much
more specific than the first kind because they are implementation oriented, meaning that
they describe don’t only describe what is achieved but also how it is achieved using the
equipment. At this level the description of how those functions interface with each other is
clear enough to model the functional architecture.

I propose to allow the system model to contain both types of functions in separate
structures. Allocation traces could then be established between those structures to
represent how “functionalities” are implemented in “functions”.

3.3.1.1 Modeling functionalities for functional analysis

Two different types of diagrams can support modeling of functionalities in VSEE.

4 The meaning of “suitable” here is very subjective. In fact there was no specific target at the beginning. It was
rather an exploratory process of trying to see if some useful information could be stored about the functional
architecture, provide added value compared to the document based version.

11
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The first one is the functional diagram that can be used to represent functional
decomposition using FunctionDefinitions and Functionss. Interfaces can be represented
although this will probably be represented at a fairly high level.

The second is the operational activity diagram, that can be used to represent scenarios or
typical procedures, where the functionalities are represent by Activity objects and where
their succession can be explicitly shown.

Both functional diagrams and operational activity diagrams are also used to represent the
more refined functional architecture and operational procedures at later stage of the
project. In order to make a distinction between the two usages I suggest to assign a
Category called “Functionality” to the Functions and Activities defined during this first
phase. This Category does not contain any properties but is just a way to tag those objects
for easy distinction later.

If allocation traces are to be represented between functionalities and the functions of the
functional architecture, new types of traces will need to be made available from
FunctionDefinition to FunctionDefinition and from OperationalActivity to
FunctionDefinition. This trace could be called “related functionality”.

3.3.1.2 Modeling the functional architecture

The functional architecture can be modeled in a functional diagram. It proved quite
impractical to try to include the complete functional architecture in a top level function
following the approach of the topological architecture. Instead, I decided to represent the
interaction of the functions in different contexts. My approach is to represent the dataflow
between the functions related to one sub-system or logical entity in a FunctionDefinition
that is used as a frame for holding the functional architecture. The contained functions can
then be refined in their own FunctionDefinitions. If a function appears in different context
it will be typed by the same FunctionDefinition, which results in a centralized reference for
this function.

When refining functions by defining sub-functions it is important to make a clear
distinction between a function that is really part of another one and a function that merely
uses or “calls” another one. A function that simply “calls” another one should simply be
interface to it and not contain it, otherwise deep nested loops can be created.

3.3.2 Functional network and functional chains

Although FunctionOccurrences exist in the meta-model supporting VSEE, there is no
feature to generate a functional occurrence layer from the functional definition layer in the
current implementation of VSEE®. This is because it was not clear yet how the functional
architecture should be modeled and whether or not it is useful to have an occurrence layer.
It is true that the concept of occurrence layer is not as obvious as the one of element
occurrence in the topological architecture, because functions are disembodied entities.

In my opinion a functional occurrence layer can nevertheless be useful to represent the
fully connected network of functions that work together in a specific context. With the

5 Note that the class is called Function and not FunctionUsage for some reason I ignore.
6 A related issue is that it is not possible to relate proxy FunctionInterfaceEnds from FunctionDefinitions to the
FunctionInterfaceEnds from Functions. Because of this it would not be possible to connect the interfaces
properly when generating the functional occurrence layer.
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support of an occurrence layer, it is possible to differentiate between different contexts in
which a function is activated, and to know to which function it gets its inputs from an
where its outputs will be used. Such occurrence network can support the concept of
“functional chain”.

Function Occurrence Network

Figure 1: Here is a representation of two function chains as seen in a function occurrence network, representing the
function that will contribute to the system outputs represented by the blue and the red dots. Note how the
FunctionOccurrence “f2.f1” and “f3.f3” contribute to both outputs

A functional chain represents the sequence of the activation of the functions needed to
fulfill a specific purpose. For example if we want to obtain one of the system outputs, such
a “functional chain” can be built by starting at the desired system output and going
backwards, propagating the chain through the interfaces connecting the required inputs of
the required functions to the outputs of earlier functions. As some functions require
multiple inputs, a “Functional chain” is not a chain per se but is rather composed of
parallel threads that converge eventually to one function.

If the concept of functional chain is judged to be useful in the model, a new class could be
made available to represent the functional chains. This class would reference the
FunctionOccurrences taking part in the functional chain.

3.3.3 Functions and modes

In VSEE, the behavior of an element is described by a state machine. It is then possible to
specify which functions are enabled when the different modes are active.

So there is a strong link between the modes of the spacecraft and the functional
architecture. Some functions are only available in certain modes, and some functions exist
in different versions depending on the mode. In the documentation this can be represented
in two ways. Either a functional architecture diagram is provided for each different mode
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and sub-mode, or there is only one functional architecture diagram where the functions
belonging to different modes are represented in different colors.

In VSEE, two similar approaches could also be used. In the first approach a different
FunctionDefinition is defined for each different mode of a sub-system, and then each mode
has an “enable” relation with its respective FunctionDefinition. In the second approach
there is only one high level FunctionDefinition per sub-system and it contained the
functions for all the modes. Then each mode enables the functions it uses with the “enable”
relationship (see figure 2).

The first approach has the benefit of having less cluttered functional diagrams. On the
other hand there are more function definitions, and it could possibly lead to an explosion in
their number depending on the possible combinations of modes.

The second approach has the benefit of reducing the redundant modeling work. But the
process of defining the “enable” relations between modes and functions can be tedious.

Approach 1 Approach 2
Satellite modes @ @ Satellite modes
& D
= 3
@ ]
I &
FD:Sat function 1 FD:Sat function 2 FD:Sat functions
fLLAOCS 1 f1:A0Cs 2 -fLAOCS 1
f2:Power 1 -f2:P ower 1 -f2:A0Cs2
f3:Payload 1 -f3:Power 1
-f4: Payload 1
Sub-systems modes AOCS Sub-systems modes AOCS
@ @
x ]
2 3
& i
FD: AOCS func 1 FD:AOGS famc 2 FD: AOCS functions
f1: Nav
-f1: Nav 1 Nav
. ' f2: Control 1
-f2: Control 1 -f2: Control 2 f3: Control 2
-f3:STK -f3:5un Sensor 2 RW
-f4: RW 1 -f4: Rw 2 15: Thrusters
-f5: Thrusters f&: Sun Sensor
-f7: STK
Lower level functions Lower level functions
FD: Nav FD: RW1 FD: RW2 FD: Nav FD: RW
-fl: a
-f2: b
-f3c
FD: Control 1 FD: Control 2

Figure 2 Illustration of the two different approaches to represent the link between functional architecture and
operational modes
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3.3.4 Relations betwwveen modes

In VSEE the behavior of a component is defined by a DiscreteModelDefinition, which is a
state machine representation of the way a different mode (represented by the object
DiscreteStateDefinition?) can be activated. When the explicit product structure is
generated, each occurrence of an element typed by an element definition receives an
occurrence of the behavior (DiscreteModelOccurence) containing occurrences of the
defined modes (DiscreteStateOccurence).

At the occurrence level it is possible to define relations between modes. There are two types
of relations between modes: the “forbidden” relation and the “requires” relation.

The meaning of the “forbidden” relation is quite straightforward: If mode A forbids mode
B, then mode B cannot be active when mode A is active.

For the meaning of the “requires” relation, tow interpretations are possible. The first one is
that if mode A requires mode B, then mode B must always be active when mode A is active.
The second one is that if mode A requires mode B, then mode B must sometimes be active
when mode A is active. The difference may seem small but it has a strong impact on the
modeling and on the usability of the model.

The first interpretation is stronger and lets us use the “requires” relation in a more
powerful way when exploiting the model8. On the other hand using this interpretation
makes it difficult to model situations where one mode of a sub-system or equipment is used
in combination with different modes of another sub-system or component. Indeed in this
case the “requires” relation cannot be used and no difference can be made between the
modes that are sometimes needed and the modes that are never needed.

Despite this drawback I chose to use the first interpretation in order to be able to use
stronger inferences in the exploitation features of the model. I assume it is most of the time
possible to divide the problematic modes that require several modes alternately into a
number of sub-modes that have a single “requires” mode relationship to any other
element’s behavior. Projects where this assumption is not valid should find another way of
modeling relations between modes.

3.3.5 Operational Activities

Operational activities are an aspect of the metamodel on which I didn’t spend much time.
The reason is that in my opinion defining semantics for the operational activities first
require that the semantics for the functional & behavioral modeling gets consolidated and
accepted, which is not yet the case. Also, an ongoing activity called FSS9, which deals with
the interfacing of VSEE to a functional engineering simulator, will probably have to
address this aspect and set some constraints of its own, which might have a big impact and
will need to be taken into account.

One thing that is envisioned is that by their capacity to represent sequences of activities
and of triggering events for mode transitions, operational activity modeling could support
the verification of the consistency of the operational modes design. Also, information about

7 The name DiscreteStateDefinition is a bit confusing because it is used to model operational modes, which is
something different from the “state” of the system. The state of the system is not modelled so far.
8 See chapter on Power Budget & Mode Consistency Checks for example
9 Functional System Simulation in Support of Model-based System Engineering
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timing and durations could be modeled, supporting the calculation of time related budgets,
such as the energy budget.

3.4 Allocations traces

In VSEE, it is possible to model links between different aspects of the model. Those links
include allocation of Requirements to other objects of the model from the topological,
functional or the operational domain, and allocation of objects of the functional domain to
objects of the topological domain.

3.4.1 Allocations and layers of the model

The framework allows setting those allocation traces at definition level, usage level and
occurrence level. I will here propose how allocation traces between the different layers
should be interpreted.
If we consider that the final product of the model is the occurrence layer, and that the
definition layer is there only to build the occurrence layer in a convenient way, we have to
define what is the effect of allocations at the definition layer on the occurrence layer.
I propose the following simple rule:
- An allocation done at definition level is propagated to all the occurrences typed by
this definition.
- An allocation done at usage level is propagated to all the occurrences generated by
this usage.

So if a Requirement is allocated to the ElementDefinition “thruster XYZ” it means that all
the ElementOccurrences typed by this ElementDefninition take part in satisfying the
requirement.

The rules are applicable for both sides of the allocation. For example an allocation between
a FunctionDefinition and an ElementDefinition means that every FunctionOccurrence
typed by the FunctionDefinition is allocated to all the ElementOccurrences typed by the
ElementDefinition. On the other hand an allocation between a FunctionDefinition and an
ElementOccurence means that that every FunctionOccurrence typed by the
FunctionDefinition is allocated to this same ElementOccurence.

3.4.2 Allocation and decomposition

Another thing to consider is that allocations can be done at different levels of the
decomposition of the system. For allocations to be traceable across the different
hierarchical levels of the system, it is important to define how an allocation to or from an
object impacts its contained objects.

For example if a Requirement is allocated to an ElemenOccurrence representing a sub-
system, does it imply that the ElementOccurrences contained in this sub-system also have
an allocation link to this Requirement? Or should each allocation link be traced manually?
What about Requirements derived from the initial one. Should it be possible to allocate
them to elements outside of the sub-system?

A driver in this discussion is the fact that we want to be able to visualize easily the
consequences of a change in any component of the spacecraft, be it a topological element, a
function or a mode. If an allocation trace exists many levels above the one where the
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change happens, it can be hard to detect it*°. On the other hand it is impractical to trace
manually all the allocations as they propagate through deeper layers. Having an automated
propagation of the traces would be helpful, but it is hard to define rules that are valid in
every situation.

A way of making this process easier is to have a similar decomposition for the
requirements, the topological architecture and the functional architecture. It is not possible
to have a perfect match (otherwise those structure would be somewhat redundant) but it
this should be kept in mind when organizing the high level architecture of the system.

10 In the current implementation
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4 EXPLOITATION OF THE MODEL

As explained in the previous chapter, one reason for establishing strict guidelines is that it
enables the implementation of automated processes on the datamodel. One part of my
work was to provide a few examples of what could be done based on the VSEE framework.
Each of those examples demonstrates how different aspects of the meta-model supports
the handling and processing of complex information.

The VSEE toolset is based on Eclipse and allows for easy integration of plugins for batch
operations and dataset checks. I used this feature to create the example exploitation tools.

4.1 Mass budget generator

4.1.1 Purpose & Philosophy

The purpose of the Mass Budget Generator for VSEE is to automatically generate a mass
budget report in a human readable format. The report is designed to resemble the mass
budget found in classic “document based” projects, while adding specific MBSE related
information.

The main challenge when we want to automatically generate a mass budget report from a
VSD model is that the model can contain a lot of different kinds of mass related data.
Indeed the fact that the VSD model captures data all along the life cycle of the project
means that it has to contain data about the requirements, the design and the verifications,
that have all to do with mass but that are conceptually different. The idea is to combine
those coexisting data types to e -nsure the consistency of the mass
data across the model when generating the report.

4.1.2 Modeling the mass data

4.1.2.1 Mass properties definitions

In order to enable mass budget automatic generation, I had to define a set of
ValueProperties in the VSD models representing the different concepts related to the mass
of elements of the space system. Here is a list of the concepts:

- Allocated Mass : Mass allocated by the system engineer to the element (can be at any

containment level). It indicates the maximal mass allowed for the element. It is
compulsory for every element of the model to have its allocated mass defined.

- Allocation Margin : The portion of the allocated mass of an element that is put aside
for coping with uncertainties. It means that this portion is not distributed further
down the product tree (if the element is at the bottom of the product tree there is no
effect).

- Mass as Specified : This is the mass value of the element according to some
specification. Typically this value will come from a library of elements.

- Mass from CAD : This is the mass value of the element as extracted from a Catia
CAD model via the import interface. This mass value is assumed to be the most up-
to date during the design phase.
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- Mass as Measured : This is the mass of the element according to some

measurement.

€Sd

- Maturity Level : level of maturity of the element as defined in ECSS-E-HB-10_02A

(table 5-1)

- Margin Policy : This property is defined only once at system level. It is in fact
composed of four properties packed together in a category called “System” and it
defines the margin that must be applied to each element according to its maturity

level.

Category

Description

Qualification programme

A

Off the shelf product without modifications
and

. subjected to a qualification test programme at
least as severe as that imposed by the actual
project specifications including environment
and

. produced by the same manufacturer or
supplier and using the same tools and
manufacturing processes and procedures

None

Off the shelf product without modifications.
However:

. It has been subjected to a qualification test
programme less severe or different to that
imposed by the actual project specifications
(including environment).

Delta qualification programme,

decided on a case by case basis.

Off the shelf product with design
modifications

Modification includes changes to design,
parts, materials, tools, processes,
procedures, supplier, or manufacturer

Delta or full qualification

programme (including testing),

decided on a case by case basis
depending on the impact of the
modification..

Newly designed and developed product.

Full qualification programme.

Figure 3: maturity levels

4.1.2.2 Where to store the properties

As the VSD models are organized in a multi-layer architecture, I also had to define to which
layer each of the mass related concepts should be attached. This was done based on the
analysis of the modeling process that is depicted in the next section.

Property Contained by
Allocated Mass ElementOccurrence
Allocation Margin ElementOccurrence
Maturity Level ElementOccurrence
Mass as Specified ElementDefinition/ ElementUsage
Mass from CAD ElementOccurrence
Mass as Measured ElementRealisation
Margin Policy Top level ElementOccurence, contained by
Category “System”
19
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Placing the Allocated Mass and Allocation Margin properties at the definition level could
also be a possibility (and would ease reuse in case of multiple same components being
used). However it seems conceptually less correct to say that mass is allocated to an
ElementDefinition because this represents specification of an element and not the actual
object.

Maturity Level Margin policy
System
Library
Mass as specified | Allocated mass |
Element Definition Element Occurrence Element Realization |
Element Usage [ Mass From CAD ] [ Mass as measured ]
mapping
CAD
model

Figure 4: Distribution of the mass properties in the model

4.1.2.3 Mass properties and modeling process

The first step in the creation of a model is to define the general architecture based on the
product tree of the system. This is done by using ElementDefinitions and ElementUsages to
define the successive containment levels of the model. At first, the elements that are at the
bottom of the product tree will only be defined by an ElementUsage without a type. This
will be a representation of a generic equipment of some type (like Star Tracker for
example).

After defining the architecture, the explicit product structure can be generated, and the
“Allocated Mass”™* (and optionally “Allocation Margin”) must be defined for each element
in its ElementOccurrence. The margin policy can also be defined by assigning the “System”
category to the top level ElementOccurence and filling the properties.

As the project goes on, choices are made concerning the specific type of equipment to be
used, and the ElementUsages representing the generic equipment items can be typed with

11 Placing the Allocated Mass and Allocation Margin properties at the definition level could also be a possibility
(and would ease reuse in case of multiple same components being used). However it is conceptually less correct
to say that mass is allocated to an ElementDefinition because this represents the concept of a type and not an
actual object (or planned object).
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ElementDefinitions that represent the specification of those specific equipment. The
ElementDefinitions can come from a reusable library. They can of course increase the
depth of the model if they define some lower level parts. Those ElementDefinitions will
typically define a “Mass as Specified” value for the element. The Mass as Specified can be
overwritten in the ElementUsage for flexibility purpose.

When a CAD of the system is available, it can be imported into VSD and mapped to the
explicit product structure. This allows extracting some properties of the CAD model, such
as the mass value, and store it as “Mass from CAD” property in the ElementOccurrences.
When the project enters production and assembly phases, the properties of the physical
components will be measured. Those properties can be stored in an ElementRealization
attached to the corresponding ElementOccurrence. Among those properties will be the
“Mass as Measured”.

4.1.3 Report

4.1.3.1 Layout

Each line of the report represents an element of the system, in a hierarchical break down.
The indentation and color of the name indicates the depth level of the element.

The columns of the report can be thought as being divided in two groups. The first three
columns (Alloc Mass, Alloc Margin and Alloc Balance) are related to mass allocation. The
Alloc Mass column shows the value of the Allocated Mass property of the element. If the
element does not define a value for the Allocated Mass (error), the column will show “-1”
and highlight it in fuchsia. The Alloc Margin column shows the value of the Allocation
Margin property of the element. If the element does not define a value, the column shows
0. The Alloc Balance column shows how much of the Allocated Mass of the element is left
to be shared among its parts. The formula for the allocation balance is “Allocated Mass*(1-
Allocation Margin) — sum(Allocated Mass of contained elements)”. If the Allocated Mass
property is not defined, the column will show o. If the Balance is negative, meaning that
more mass than available has been allocated to the parts of this element, the value will be
highlighted in fuchsia.

The next four columns are related to the actual mass of the element. The column Mass
Type indicates where the actual mass information comes from, i.e which kind of
ValueProperty was available. The Maturity Level column shows the value stored in the
Maturity Level property of the element. The Mass column shows the actual mass of the
element, representing the most reliable mass value available. This value can come from the
Mass as Specified, the Mass from CAD, the Mass as Measured or be computed based on the
mass of the components of the element (see next section). The auxiliary value on the right
of the Mass column shows the value of the sum of the mass of the parts of the element, and
can be used to highlight problems when mass properties are stored at different
containment levels in the model and are inconsistent. The contingency column shows the
mass contingency for the element calculated from the actual mass, the Maturity Level and
the corresponding Margin Policy.

The Final Balance column shows the difference between the mass allocated to the element
and its actual mass. If this value is negative, it will be highlighted in red, and so will be the
mass value. If there is a problem with the allocated mass itself, the value will be highlighted
in fuchsia.
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At the bottom of the budget table, a list of textual warnings is displayed that explain the
different problems that occurred in the mass budget.

Element Alloc  Alloc Alloc  Mass Type Maturity Mass = Marg. Final
Mass Margin% Balance Level Balance
Spacecraf 900 10 10 FromParts LevelA 69548 388 165.72
payload 250 0 250 LevelC 0 0
platform 550 10 13 FromParis LevelA 44548 388 65.72
Data 46 0 46 FromCAD LevelB 418 418 0.02
Handling
Power 100 0 3 FromParts LevelA 899 899 1.1
Battery 40 0 40  AsSpecified LevelB 404 404 4.44
Solar 35 0 35  AsSpecified LevelB 30.1 301 1.89
Panel
PCUD 22 0 22  AsSpecified LevelB 194 1.94 0.66
Propulsior 30 0 30 FromCAD LevelB 269 269 0.41
Structure 200 0 200 FromCAD LevelB 193 19.30 -123
T7C 7 0 7 FromCAD LevelB 538 0.58 0.62
Thermal 24 0 34 FromCAD LevelB 306 3.06 0.34
Control
aocs 65 0 08 FromCAD LevelA 5748 0.00 7.52
starTracke 10 0 10 FromCAD LevelA 7.7 0.38 1915
MTQs 12 0 12 FromCAD LevelA 103 0.51 1.185
MAGs 05 0 05 FromCAD LevelA 04 0.02 0.08
RWs 38 0 38 FromCAD LevelB 344 344 0.16
Sun 03 0 03 FromCAD LevelB 024 0.02 0.036
sensor
GPS 5 0 5 FromCAD LevelB 444 044 0116
List of issues
Issue type Affected element Text
mass budget batch operation aocs ElementOccurrence aocs has a smaller allocated mass (minus
margin) than the sum of the allocated mass of its parts.
mass budget batch operation Battery ElementOccurrence Battery has a higher actual mass (incl.
contingency mass) than its allocated mass.
mass budget batch operation Structure ElementOccurrence Structure has a higher actual mass (incl.

contingency mass) than its allocated mass.

Figure 5: Example of a mass budget report
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4.1.3.2 Rules for “actual mass”

The “actual mass” of an element is the value displayed under the column Mass of the report
and considered to be the most reliable value for its mass. This value can come from
different sources and priority rules apply to determine which source will be used. Here is
the list of priority rules:

- Take value from Mass as Measured stored in the ElementRealisation attached to the
ElementOccurrence. If not available...

- Take value from Mass from CAD stored in the Element Occurrence. If not
available...

- Take value from Mass as Specified, from the ElementDefinition that types the
ElementOccurrence (or from the ElementUsage if the value is overwritten there). If
not available...

- Compute value from the sum of the Actual Mass of the parts of the element. If this
cannot be done (because the element has no parts)...

- Take value from Allocated Mass.

Maturity Level ® Margin policy

Library 5| Allocated mass : Contingency
| | Margin Mass
3 | Mass as specified | 4| Mass From Parts |
Element Definition I Element Occurren(EIH Element Realization |
Element Usage 2 | Mass From CAD 1 | Mass as measured |
mapping

Element Occurrence

CAD parts

model

Figure 6: Priority of the mass properties for being selected as "actual mass" during the budget calculation. The way
the contingency mass is calculated is also shown in orange.

4.1.3.3 How to obtain the report

After having populated the model with the ValueProperties described earlier, the

generation of the mass budget is a three step process. The first step is to perform a group of

dataset checking called “Mass Dataset Checks”. This operation will generate some

annotations in case of mass related inconsistencies in the dataset, and those annotations

will be shown in the mass budget. The second step is to run a batch operation called “Mass
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European Space Agency
Agence spatiale européenne



€->esa

budget calculation”. This will produce a file called “massBudget.xmi” in the SSDE
directory. This file must then be copied to the workspace of the BIRT project called “mass
budget report”. In BIRT, open “massBudgetReport.rptdesign” in the “mass budget report”
project. You can obtain a preview by selecting the “preview” tab or click the “View Report”
button in the toolbar to choose how to export the report.

System BIRT

(eclipse)

Model
(loaded)

Figure 7: Data flow for the generation of the mass budget.

4.1.4 Mass Budget Delta Report

4.1.4.1 Purpose

The mass budget delta report shows the difference in the mass budget between the current
version of the project and an ancestor version.

4.1.4.2 How to obtain the report

Take the massBudget.xmi generated for the ancestor version, rename it
massBudgetAncestor.xmi and copy it to the workspace of the BIRT project called “Mass
Delta Report”. Do the same with the file generated for the current version but call it
massBudgetCurrent.xmi.

Note that the massBudget.xmi file gets overwritten each time the batch operation “mass
buget calculation” is used. Therefor the file should be collected and stored somewhere else
in prevision of its use for the mass budget delta report.

4.1.4.3 Report Layout

As for the mass budget report, each line of the report represents an element of the system,
in a hierarchical break down, and the indentation and color of the name indicates the depth
level of the element.

In this delta report, the columns represent the difference between the current dataset and
the ancestor dataset (current value — ancestor value) for the different values related to
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mass. The explanation about each column can be found in the explanation about the mass
budget report.

If an element has been deleted or has been created in between the two versions of the
datamodel, its name will appear in red or green respectively.

/%(/K?/

Element Delta Delta DeltaMass Delta Delta Final
Allocated  Allocation Contingency Balance
Mass Balance Mass
Spacecraft 0 0 54 -0.54 594
payload 0 0 0 0 0
platform 0 -13 54 -0.54 594
Data 0 0 0 0 0
Handling
Power 0 0 54 -0.54 594
Battery 0 0 54 -0.54 594
PCUD 0 0 0 0 0
Solar Panel 0 0 0 0 0
Propulsion 0 0 0 0 0
Structure 13 13 0 0 13
TTC 0 0 0 0 0
Thermal 0 0 0 0 0
Control
aocs 0 03 0 0 0
GPS 0 0 0 0 0
MAGs 0 0 0 0 0
MTQs 0 0 0 0 0
RWs 0 0 0 0 0
starTracker 0 0 0 0 0
Sun sensor -0.3 -0.3 -0.24 -0.024 -0.036
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4.2 Power budget generator

4.2.1 Purpose & philosophy

The purpose of the Power Budget Generator for VSEE is to automatically generate a power
budget report in a human readable format. The report is designed to resemble the power
budget found in classic “document based” projects.

The main challenge when we want to automatically generate a power budget report from a
VSD model is that it involves the different modes of each element, and the relation between
the modes of the different levels of the model.

For this example, I decided to disregard the multi-dimensionality of the data that was
taken into account for the mass budget, in order to focus on the specificity of dealing with
modes. This means that the power consumption data will only reside at occurrence level,
not taking into account the fact that the data could come from a catalogue at definition
level. The same mechanism as used for the mass budget generator could be applied
straightforward for the power budget too to deal with that matter.

4.2.2 Modeling the power consumption data

Since the power consumption of the components can change depending on the operational
mode of the component, the best way to store the power consumption data is to attach it to
the DicreteStateOccurrence objects themselves instead of attaching it to the
ElementOccurrence like was done for the mass. This allows storing the data for each mode
separately. We call the ValueProperty “Power Consumption”.

We then need to represent in the model which modes of the components are active when a
sub-system is in a specific mode. For this, I used the “requires” relation between
DiscreteStateOccurrences, with the assumption that each component can only be in one
specific mode for each mode of the sub-system (i.e. the mode of the subsystem defines
completely the modes of its components).
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With the data modeled this way, the power budget can simply be calculated for each mode

of a sub-system by adding the power consumption of all the component modes required by
this sub-system mode.

Note that only the required modes belonging to components that are contained in the sub-
system are taken into account, although “requires” relation can also be defined with modes
of elements that are not contained.

4.2.3 Layout of the report

The elements of the system are shown in a hierarchical break down, an each line represents
a mode of an element. Note that elements that do not have modes or a power consumption
value are omitted.

The column named “Power” contains the value of the power consumption of the element in
this mode. The column “Englobing modes” lists the modes of the containing elements that
require this mode.
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Spacecrafi

payload

platform

Propulsion

Thermal
Control

aocs

Element

GPS

MAGs

MTQs

RWs

Sun sensor

starTracker

Mode

Sat_Launch_Mode
Sat_Survival_Mode
Sat_Science_Mode
Sat_Calibration_Mode
Sat_Orbit_Maintenance_Mode

Payload_Off_Mode
Payload_Science_Mode
Payload_Calibration_Mode
Payload_Standby_Mode

Plat_Survival_Mode
Plat_Nominal_Mode

Plat_Lauch_Mode
Plat_OrbitMaintenance_Mode

Prop_On
Prop_Off

Therm_Nominal
Therm_Survival

Therm_Off

AOCS_Safe_Mode
AOCS_Nominal_Mode
AOCS_OrbitControl_Mode
AOCS_Ofi_Mode

GPS_On

GPS_Off

MAGs_On

MAGs_Off

MTQs_On

MTQs_Off

RWs_On

RWs_Off

SunSensor_On
SunSensor_Off

STR_On

STR_Off

Power

100
190
3378
3878
2798

150
200
50

140
1878

100
2298

42

128

100

40
59.8
598

938

10

28

12

Englobing modes

cCooos

[Sat_Launch_Mode]
[Sat_Science_Mode]
[Sat_Calibration_Mode]
[Sat_Survival_Mode,
Sat_Orbit_Maintenance_Mode]

[Sat_Survival_Mode]
[Sat_Science_Mode,
Sat_Calibration_Mode]
[Sat_Launch_Mode]
[Sat_Orbit_Maintenance_Mode]

[Plat_OrbitMaintenance_Mode]

[Plat_Survival_Mode,
Plat_Nominal_Mode]

[Plat_Nominal_Mode,
Plat_OrbitMaintenance_Mode]
[Plat_Survival_Mode,
Plat_Lauch_Mode]

0

[Plat_Survival_Mode]
[Plat_Nominal_Mode]
[Plat_OrbitMaintenance_Mode]
[Plat_Lauch_Mode]

[AOCS_Nominal_Mode,
AOCS_OrbitControl_Mode]
[AOCS_Safe_Mode,
AOCS_Off_Mode]

[AOCS_Safe_Mode]
[AOCS_Nominal_Mode,
AOCS_OrbitControl_Mode,
AOQCS_Off_Mode]

[AOCS_Safe_Mode,
AOCS_Nominal_Mode,
AOCS_OrbitControl_Mode]
[AOCS_Off_Mode]

[AOCS_Safe_Mode,
AOCS_Nominal_Mode,
AQCS_OrbitControl_Mode]
[AOCS_Off_Mode]

[AOCS_Safe_Mode]
[AOCS_Nominal_Mode,
AOQCS_OrbitControl_Mode,
AOCS_Off_Mode]

[AOCS_Nominal_Mode,
AOCS_OrbitControl_Mode]
[AOCS_Safe_Mode,
AOCS_Off_Mode]
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4.2.4 How to obtain the report

After having attached the ValueProperty “Power Consuption” to the
DicreteStateOccurrences, the generation of the power budget is a two-step process. The
first step is to run a batch operation called “Power budget calculation”. This will produce a
file called “powerBudget.xmi” in the SSDE directory. This file must then be copied to the
workspace of the BIRT project called “power budget report”. In BIRT, open
“powerBudgetReport.rptdesign” in the “power budget report” project. You can obtain a
preview by selecting the “preview” tab or click the “View Report” button in the toolbar to
choose how to export the report.

4.3 Mode consistency checker

4.3.1 Purpose and philosophy

The mode consistency checker helps detecting incoherence in the constraints between
modes. The idea is that for large systems, an intricate network of relations between modes
can exist and that it can be hard to detect operational conflicts, whereas an automated
process can do this easily for certain type of conflicts.

The tool is composed of two separate elements. The first one, called Mode Constraints
Extender, automatically creates constraints between modes by inferences drawn from the
existing constraints. The second one, called Mode Constraints Consistency Check, analyses
the relations between modes with some simple rules and flags issues.

The Mode Constraint Extender has to be used first so that all constraints can be analyzed
by the Mode Constraints Consistency Check.

4.3.2 Rules

The two types of constraints that can be modeled between DiscreteStateOccurrences has
already been described in section 3.4.4. I will now explain how rules are applied on those
constraints.

4.3.2.1 Mode Constraints Extender

The Mode Constraints Extender follows one rule for creating new “requires” relations, and
one rule for creating new “forbids” relations. The two rules are the following;:
- If mode A requires mode B that requires mode C, than mode A requires mode C.
- If mode A requires mode B that forbids mode C, than mode A forbids mode C, and
mode C forbids mode A2,

12 The way we define the “forbids” relation causes it to be always bi-directional
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requires requires

requires _ forbids ,
.. requires d\ forbids

The constraint relations created with the Mode Constraints Extender are automatically
assigned with the Category “automaticallyGeneratedItem”. The purpose is to differentiate
them form the user defined constraints, and to be able to erase them all if desired.

4.3.2.2Mode Constraints Consistency Checker

The Mode Constraints Consistency Checker detects two kinds of conflicts, following those

two rules:
- A mode cannot require a mode and forbid (or be forbidden by) this same mode at

the same time.
- A mode cannot require more than one mode belonging to the same element.

Element B

Mode A 1\‘{ Mode B

Those situations are not likely to be modeled directly but can appear after the Mode
Constraints Extender has been used to generate all the implied relations.
Mode constraints that are in conflict are annotated accordingly.

4.3.3 Examples
Here are two examples of simple inconsistent situations that can be detected.
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Figure 8: Mode 2 of element A ends up requiring both modes of element C, which is not allowed.

Figure 9: Mode 2 of element A ends up requiring and forbidding mode 2 of element D, which is not allowed
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4.3.4 How to run the check

First the batch operation “required modes extender” must be executed. This will potentially
create new DiscreteStateOccConstraints, which will be labeled with the Category
“AutomaticallyGeneratedItem”. Then the batch operation “mode constraints consistency
checker” can be executed, and will potentially create some annotations attached to some
DiscreteStateOccConstraints. Those annotations can be found by going to the Annotation
Editor, selecting the Check-Annotation tab and filtering the result to show types
RequiedState or ForbiddenState.
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ANNEX A: IMPLEMENTATION DETAILS

SSDE Plugins

Plugins have to be added to the “plugins” folder of SSDE, and then edit the 'bundles.info'
file in SSDE's 'configuration/org.eclipse.equinox.simpleconfigurator' folder as described in
SSDE’s user manual.

Mass Budget Generator

The mass budget generator uses two plugins. The first one is
“rey.massBudgetBatchOperation_1.0.0.jar”, which is the batch operation that produces the
massModel.xmi file as well as some annotations!s on the elements in case of
inconsistencies. This file is based on a simple EMF model for the representation of
elements of the budget, which correspond to ElementOccurrences in the explicit product
structure. Those budget elements gather the information about the allocated mass, the
actual mass, the maturity level, and their position in the product tree by indicating their
containment hierarchy in the “Level X” fields. The EMF model also has objects for
representing the margin policy and the mass related annotations.

The second one is “rey.datasetchecker.massDatasetChecks_1.0.0.jar”, which is a dataset
check which does some additional consistency checking (things that could not conveniently
be integrated to the batch operation) and annotates the elements in case of inconsistencies.

Power Budget Generator

The plugin used for the power budget report is
“rey.powerBudgetBatchOperation_1.0.0.jar”. It produces a file called “powerBudget.xmi”
which is based on a simple EMF model for the representation of elements of the budget.
There is one such element for each DiscreteStateOccurrence carrying the “Power
Consumption” ValueProperty. Those elements carry the information of the power
consumption, about which higher level mode requires them, and of their position in the
product tree by indicating their containment hierarchy in the “Level X” fields.

Mode consistency checker

The mode consistency checker uses the two plugins
“rey.modes.requiredModesExtender_1.0.0.jar” and
“rey.modes.modeConstraintsConsistencyCheck_1.0.0.jar”.

13 Note that batch operations don’t usually produce check annotations. However I decided to add this manually to
the batch operation because those checks take advantage of the processing done during the mass budget
generation.
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BIRT

Obtaining the data source

BIRT an eclipse based reporting tool. It accepts many different format of data sources as
input an can generate reports in many formats.

BIRT can read EMF (Eclipse Modeling Framework) models using a EMF to ODA (Open
Data Access) driver4. For using EMF models, the corresponding EMF metamodel must be
registered in Eclipse. This is done by gathering in a feature the three plugins (model code,
edit code and editor code) generated from the model by EMF, and then installing the
feature in Eclipse by going to the “help” menu and choosing “install new software”. In the
new window press the “Add” button, and then press “Archive” and select the archive file
containing the feature to be installed. If you then untick the “group item by category”
option, the feature will appear in the list. Select it and press next to install it.

The file “massBudget.xmi” generated by the Mass Budget Generator is in a EMF format,
and the feature “mass_budget_model_feature.zip” must be installed in Eclipse to enable
BIRT to read it.

The file “powerBudget.xmi” generated by the Mass Budget Generator is in a EMF format,
and the feature “power_budget_model_feature.zip” must be installed in Eclipse to enable
BIRT to read it.

The reports design

BIRT has interesting features for creating listings with some grouping in categories.
However it does not support well the representation of containment hierarchies such as a
product tree. In order to create such structure, I had to use a workaround. I created in
BIRT a series of joint data sets so that each element of the final data set also contains the
data related to its containing elements. The elements are then grouped according to their
“levels” properties to create the breakdown. The elements that are not at the deeper level
need to be filtered out because we don’t want them to create a separate entry in the table.
What we want is to display their data on the line where the corresponding group headline
is (the name of the group being the name of the containing element). As the data
corresponding to the containing element is available is all its contained elements, the first
element of the group provides the data so that it can be displayed at the headline level.

If an element is not at the deepest level but does not contain any further parts, it is not
filtered out because the entry has to be created. However the entry is “highlighted” in white
so that only the headline appears, avoiding the redundancy.

Delta mass budget report

For the Delta Mass Budget report, the current and ancestor datasets are joined based on
the unique ID of the elements. If an element has been deleted or created in the current
dataset, it will be detected by noticing that the data relative to the current or ancestor
dataset are empty in the new joint dataset, and this is highlighted in the report.

14 This driver has to be installed in Eclipse by going to “help” -> Install new software, then selecting “Juno -
http://download.eclipse.org/releases/juno” in the “work with” field, and the going to the “Modeling section”.
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Special “computed columns” had to be created in order to access the right data if the
element is missing in one of the datasets. Those columns simply take the non-empty value
from either the ancestor or current dataset. Then using those columns new or deleted
elements can be treated as the other elements.
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ANNEX B: STEP BY STEP MODELING GUIDELINE

This is a step-by-step guideline to creating a model of a space system using the Space
System Design Editor (SSDE) following my method. It does not cover every aspect of SSDE
but is a walkthrough to discover the main aspects of the tool and to understand how things
come together.

It is assumed that the reader has read the SSDE user manual, as I will not explain how to
execute each command in detail. The CamelCased words (ElementUsage for ex.) refer to
the names of classes from the VSEE meta-model. Details about those classes can be found
here: http://www.vsd-project.org/jspwiki

The coloured text corresponds to operations required for using the Mass Budget Generator,
the Power Budget Generator and the Mode Constraints Consistency Checker features.

Requirements and verification planning

1. In RDE editor, create RequirementRepository objects to organise the
requirements as desired.

2. Create Requirements in the RequirementRepositories and define “derivation”
traces between them to model the requirement break-down.

B vsD SSDE Application

File Edit Refinement - Search Actions ‘Window Help

JH‘#E@??S&JOJJ@JQ‘JJ‘?{@JPEDJJ@@JBJ’L»]O'J i

£ sspe Navigator | =] & = O || JRoe Edior £3 |
17 CatiaPropertyDefinitions y
TET Check annotations test RADE
L Eucld » Filter
1 First merge
7 Mass budget test § Neme ~ | Title: | Require... | Type
12T Mass properties definitions [ B 01-ESA System/Mission Requirements
1 Power budget test Acquiring operational orbit after launch SY - ARC - O( Functional
121 Presentation graphs =] Autonomous switch-on after launch 55-OPE-0640 Functional
L SIDefinitions b4 Autonomy in safe mode 55-OPE-0620 Functional

[#-{*% Sentinel 5P — Autonamy of operation Functional
1 Sentinel 5P current 44 Compatibillty with the launcher S¥ - ARC 006 Interface
L StarTrackerCatia ] Deorbiting PF-461 Functional
1 Test interface nesting Flight segment architecture 5¥-ARC-0010 Configuration
7 vsD_DS_DataSet_V1_7_7 Measurement of Earth radiance and reflectance SY - MIS - 00% Mission
1 checktest Minimal mode classes 55-OPE-0030 Operational
1 diff report test 1 B Painting accuracy
LT diff report test 2 Redundancy of measurements For critical functions TM-14 Design
LT fifthcheckkest Spacecraft services to payload SY-ARC-0018 Functional
1T import test 2 =] B 02 - System Specifications
7 import test library Manual mode transition PF-330 Operational
L import test main Manual mode transition inhibition PF-391 Operational
17 integration test main = & 03 - Subsystems Requirements
17 integration test prime = B 01-40Cs
L integration test supplier AOCS automatic recovery of nominal pointing PF-634 Operational
L inkegration test supplier step 3 AOCS Autonomy PF-684  Functional
1T integration test supplier step2 AOCS controls Orbit control maneuvres Operational
17 library test 2 AOCS functionality 55 - AOC - OC Functional
157 mass budaet simole B A< made for maacirament

SS-AAC-NNTF Einctinnal

Figure 10: The RDE editor

3. Inverification editor, create the appropriate verification object (Analysis, Test,
Inspection, Review) for each Requirement, and fill the details of the verification
plan (create VerificationCases, VerificationRuns).
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B vsD SSDE Application

File Edit Requirements - Search Actions Window Help

o

£ SSDE Navigator |

& v -
S Requirements

107 CatiaPropertyDefinitions =
1 Check annotations test

: 17 First merge

: 17 ¥SD_DS_DataSet_v1_7_7
i 17 checkkest
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7 integration test supplier
I 7 integration test supplier step :
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; 17 library test 2
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P 107 occurrence integration test
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T requiredstateTest
1T second merge
1T second merge step2
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Figure 11: The versification editor

[=] =59 Analysis

Topological Architecture

EEEEETICICLES-BE =1 ~ [0 IESEANE
= 8|\ JroEEdtor  |o// verification Editor £3 =0

o B 01 - ESA SystemjMission Requirements Annotations

= properties 22 l

Basic

1T Euclid - B3 02 - System Specifications

QUDY Values.

=8 o3- Subsystems Requirements

Traceability

AOCS automatic recovery of nominal pointing

T Mass budget test & B 8 o1-s0cs
1 Mass properties definitions =2 AQCS After separation
1] Power budget test
[T Presentation graphs X AOCS Autanomy
1T SIDefinitions w8 AOCS controls Orbit control maneuvres
rak EanreeEp) cu AOCS functionality
1 Sentinel SP current as AOCS mode for measurement
07 StarTrackerCatia AOCS on-board orbit propagator
107 Test interface nesting AOCS orbit estimation

= [ AOCS Pointing capability

inary guidance and control simulation

=] E minal configuration

&) Sub Cases

Geocentric pointing
B 02 - Propulsion module
a_ 04 - Componants Requirements

YerificationAnalysis

Name

AIT Flow Activity

Case

Corresponding Element

Decomposed Of

Description

x

&

[ ]

Preliminary guidance and control sim

Nominal configuration

aocs : AOCS

[everal performance metrics have

been investigated in order to analyz
he NM mode:

performances (see §3.3.1):

* Absolute pointing (APE)

 Angular rate error (ARE)

* Absolute location (AKE)

1. In the topological diagram editor, create the high level architecture. Start by
creating an ElementDefinition representing the whole system. Assign the
Category “System” to this ED and fill the value of the ValueProperties of this
category, such as the margin properties.

2. Create the breakedown of the product tree by using a succession of
ElementUsages and ElementDefinitions typing those ElementUsages. When
reaching a level where the Component Library's can be used (typically the
equipment level), leave the ElementUsages untyped. Those ElementUsages will
be typed later using ElementDefinitions of the Component Library once the

specific equipment has been chosen.

15 The Component Library doesn’t exist yet but is envisioned to be a set of reusable ElementDefinitions (and their
contained ElementUsages, Interfaces, Behavior, and the valueProperties they use and their value) that can be
imported in the project. The ElementDefinitions of the library will represent the spec sheet of specific type of

equipments.
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Figure 12: Two topological diagrams showing the high level architecture of the system. In the first diagram the ED

"S5P Satellite” has an element usage
second diagram with its parts.

"platform” typed by the ED "Platform". This ED "Platform" is represented in the
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3. If desired, high-level interfaces can be modelled between elements. For this,
attach InterfaceEndUsages (aka. ports) to the ElementUsages inside an
ElementDefinition and connect them using IntefaceUsages. If an ElementUsage
has to be interfaced to an ElementUsage outside of the containing
ElementDefinition, click right on the InterfaceEndUsage and select “create proxy
port”. This will create an InterfaceEndUsage on the containing
ElementDefinition and connect the ElementUsage to it. The IntefaceEndUsage
on the ElementDefinition can then be retrieved in all the ElementUsages typed
by this ElementDefinition using the auto-crate feature (in a blank space of the
diagram, click right and select “show auto-create view”) .

4. Generate the Explicit Product Structure (occurrence layer) by right-clicking on
the “Explicit Product Structure” node in the SSDE Navigator, and choosing the
ElementDefinition that is the top element of your model. Assign the Category
“OccurenceMassProperties” to the ElementOccurrences and fill the value for the
ValueProperty “allocated mass” and optionally “allocation margin” and “maturity

»
level”.

File Edit - Search Actions Window Help
k=22 & |0/ o4 | P

T 55D Navigator| (=] 5 ¥ = O

=

T CatiaPropertyDefinitions =
127 Check annotations test
12T Euclid
1T First merge
127 Mass budget test
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1.7 Power budget test
T Presentation graphs
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! Requirements
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- {5 Generic Tree St
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[+ E Category
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‘2 Operational De -~
i m E22 Operational Acl [ Lock
=] & Topological Set Data Groups
B AoCSinter et Trace
AOCS over 3¢ Delete from Model Ctri+Delete
EPS T

L

Generate Occurrence Tree Ctrl+6

MNavigate to »

Attached Files 3

Select Al Ctrl+A
ae|Restore

Unlack

Figure 13: Generating the explicit product structure.

5. Allocate Requirements to ElementOccurrences (alternatively allocation can be
done at ElementUsage or ElementDefinition level if the allocation is generalised
to all the occurrences covered by those levels) using ReqArchSatisfy trace.

6. For each VerificationAnalysis or VerificationTest, complete the “Corresponding
Element” or “Item Under Test” property with a link to the appropriate
ElementOccurrence.
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7. Once the specific equipment is selected, type the corresponding ElementUsage
with the appropriate ElementDefinition from the Component Library?¢.

8. Using the AutoCreate feature, select the ElementUsages of the equipment and
make the ports (InterfaceEndUsages) of the typing ElementDefintion available to
the ElementUsage and appear in the diagram. Connect ports to other
ElementUsages or create proxy ports on the containing ElementDefinition. In
case interfaces and ports have already been crated in previously, the ports of the
ElementUsage must be related to the ports of the ElementDefinition using the
“Related Interface” field in the InterfaceEndUsage.
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Figure 14: Using AutoCreate to propagate InterfaceEnds from ElementDefinition to ElementUsage to connect them to
other ElementUsages

9. Regenerate Explicit Product Structure (at the last step of the wizard you’ll have
to select the occurrence tree created in step 4 to avoid creating a new separate
one). This will add the internal structure of the newly typed elements to the
Explicit Product Structure as well as the interfaces.

10. Once components start being produced, ElementRealisations can be created
(this can be done from the table editor) to represent those physical components
and to gather the data about them. The ElementRealisation can be attached to

16 See nb 12
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ElementOccurrences using the “integrated to” or “integration candidate”
relationship.

I8
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EEEEEFICIEEE - = ERAC NP |
£ sspE Navigator | (=] 5 ¥ = O ||F Table Explorer £3 | =0
17 CatiaPropertyDefinitions | .
1 Check annotations test Table Explorer e &
T Euclid

Table of Elements
T First merge

127 Mass budget test » Filter

12T Mass properties definitions Model: | vSEE v | Type: I lementR

17 Power budget test

~| Show Metamodel OCL: [_

Explicit Product Structy Basic ElementRealisation

{3 Generic Tree Structure
Y Diagrams

Annotations Name reaction wheel 1

2 Path:
CT Presentation graphs
1T sIDefinitions * Name ~ | Categories. | Description | Serial Number Path
E1-7F Sentinel SP 1% [ER reaction wheel 1 XXXXK >

& Intra

B Model
(-5 Table Explorer Search: [T RE < | < |Elements: 1 Found: 0

Qﬂ Verification Editor

[P annotation Editor Reference Tahles

‘ <
®=-tg — =
(- T3 Tree Explorer = roperties X 2~ -> =0
¢ Requirements

B-@ External files —|| QUDY Values

1T sentinel SP current Traceability Description B
1 StarTrackerCatia

2T Test interface nesting

0] ¥SD_DS_DataSet_¥1_7_7 $’ Integrated To

1T checktest

" reaction whel 1 : Reaction Wheel

1 diff report test 1 x
T diff report test 2
7 fifthchecktest
T import test 2

1 import test library
2 import test main

Integration Candidate __,

7 integration test main %
T integration test prime =

] —] Related File

) »
Search: CRre B 1S

]

|

Figure 15: Creating a new ElementRealisation from the table editor and liking it to the ElementOccurrence

Functional architecture

1.

41

In a Functional Diagram, create framing FunctionDefinitions representing different
contexts or sub-systems (for example “AOCS functions”, or “communication
functions”). Note that unlike the topological architecture, there will not be a top
level function enclosing the whole system.
Create Functions inside the framing FunctionDefinition and connect them with
FunctionalInterfaces to represent the flow of data. If the same function appears in
different contexts (in different framing FunctionDefinitions), create an
FunctionDefinition representing this function and type all the Functions with it.
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3. Where needed, refine the Functions by creating a FunctionDefinition, typing the
Function with it and representing the sub-functions in the FunctionDefinition.
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Figure 16: Creating the framing function "TTC Functions", with inside the functions "receive TC" and "transmit TM".
"Receive TC" is refined in a new FunctionDefinition.

4. Allocate Functions (or alternatively FunctionDefinitions if all the Functions they
type must be allocated to the same Element) to topological elements. The allocation
can be done to ElementOccurrences, ElementUsages or ElementDefinitions,
depending on how generic or specific the allocation is. This is done by going to the
“Traceablility” tab in the properties of the function, selecting the “traced by” tab, and
then adding the allocation traces using the “...” button.
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Figure 17: Allocating functions to topological elements.

5. Allocate Requirements to Functions (or alternatively to FunctionDefinitions). This is

done by going to the “Traceablility” tab in the properties of the function, selecting
the “traces” tab, and then adding the allocation traces using the “...” button.
Optionally, allocate FunctionInterfaceEnds and FunctionInterfaces to the
topological InterfaceEndUsages and InterfaceUsages. This can be used to track how
the functional dataflow maps to the electrical interfaces, and to analyse loads on
those interfaces.

Modes
1.

For all the elements that have different functioning modes (at equipment level but
also at sub-system and system level), create a DiscreteModelDefinition to represent
its behaviour. This can be done by selecting the ElementDefinition typing the
element and by clicking the period symbol under the “behaviour” property. In the
window that pops up, click the green “+” symbol to create a new behaviour. Another
way of creating a behaviour for an element is to create an Operational Design
Diagram and to place a DiscreteModelDefinition. A window will appear and allow to
select an ElementDefinition to which the behaviour should belong. If you have
already created the behaviour of this ElementDefinition using the first method, it
will not duplicate the DiscreteModelDefinition but simply make it appear in the
diagram.
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Figure 18: Creating a new behaviour for the ElementDefinition "Battery”

In the Operational Design Diagram, create the DiscreteStateDefinitions
representing the modes of the element, and create the appropriate transitions
between those modes. Transitions of type “Conditional Event” can be associated to a
ValueConstraint, that describes the triggering condition by a mathematical relation
between ValueProperties. Conditional Events can also be associated to a
ModeRequest in an OperationalActivity diagram.
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Figure 19: Showing part of the AOCS behaviour, with the "Acquisition and Safe Hold Mode'; and "Normal Mode" and
transitions between the two. Also shown are sub-modes. The "enabled functions" of the safe mode are visible in the
properties.

Traceability

Il 1«

3. Select the FunctionDefinitions that are “enabled” by each mode, among the
functions allocated to the element associated to the behaviour. This is done by.
Optionally the functions in the Functional Diagrams can be coloured (selecting the

“Appearance” tab in the properties window) according to the mode by which they
are “enabled” .

4. Regenerate Explicit Product Structure. DiscreteModelOccurrences and
DiscreteStateOccurrences will be created. Assign the Category

“OccurrencePowerProperties” to the DiscreteStateOccurrences from the lower level
(where power consumption data is available) and fill the “power consumption”.
From the DicreteStateOccurrences (the appear in the explicit product structure),
create RequiredState or ForbiddenState constraints to represent the dependencies
between the states. This can be done by going to the “Traceablility” tab in the
properties of the function, and creating new traces to other DicreteStateOccurrences
by pressing the “...” button and then selecting DicreteStateOccurrence in the “type”
field. The RequiredState constraint is useful to represent how sub-system level
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modes use equipment level modes, and will be used by the Power Budget Generator.
But both types of relations can also be established at same level to represent a
constraint that must be enforced. The Mode Consistency Checker can then be used
to reveal any inconsistencies between the constraints.
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Figure 20: Creating constraints between modes (at occurrence level)

Operational activities

1. In an Operational Activity Diagram, create an OperationalProcedure representing
the mission, and create a sequence of MissionPhases to represent the mission
timeline.

2. Mission phases can be refined by creating another OperationalProcedure and
associating it with the MissionPhase object under its “Call Procedure” property. The
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refining OperationalProcedure can show OperationalActivities, and represent the
operational control flow using Decision objects and Split or Joint of control.

3. MissionPhases can define which of the modes defined earlier are allowed to be
active with their “Valid Modes” property. Mode transitions can be shown explicitly
with a ModeRequest object. This object must be linked to a “Conditional Event”
transition.

/-

Verification

1. After verifications are executed, go to the verification editor and create the
VerificationVerdict object as a child of appropriate VerificationRun. Fill in the
details of the results and check the “passed” checkbox if applicable.
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Figure 21: Entering verification verdicts.
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